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SUMMARY

The iteration equations for a simplified solution of the nonlinear
compressible-flow equation are developed and applied to two .profiles,
the ellipse and the Kaplan section. Limitations imposed on the solu-
tions by simplificetions in the differential equation and the boundary
conditions are discussed. The velocitles near the midchord, the -criti-
cal and potential limit free-stream Mach numbers, and the extent of
isentropic supersonic regions are calculated to four gpproximations
for the Kaplan section and to six approximations for the ellipse. The
development of the iteration equations and the presentation of the
results are made in conformity with the Kérmin trensonic similarity
law and comparisons are made with other solutions.

INTRODUCTION

Because of its nonlinear nature, the partial differential equa-
tlon that describes the flow of a perfect compressible fluid has no‘b
yielded completely to any method of solution so far advanced. In
fact, in such methods as the iteration procedures and the variational -
method (reference 1), it is not even abtempted to find a closed-form
solution or the general term of a series expansion; rather, a finite
(and usually small) number of terms of a series expansion are obtained.
Unfortunately, in such cases, whereas more and more terms are required
as compressibility effects become more pronounced, the difficulty of
securing the higher terms becomes inordinately greater. Although the
difficulties of nonlinearity may be overcome by & transformation to
thé hodograph plene and the choice of a convenient gas law (refer-
ence 2), a new problem arises in the solution of eny boundary-value
problem because of the dis‘tor‘tion of the boundary.

The solutions by iteration are begu_n by expanding.the velocity
potential as a series in terms of some flow parameter; it is then pos-
sible to determine each term from those which precede it by solving a
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2 NACA TN 2511

linear equation. Whenever the flow is over a thin body at relatively
high speeds, it is preferable to expand the potential in terms of some
parameter characteristic of the body, such as thickness ratio, camber
coefficient, or angle of attack. The first term of the solution is a
constant representing the undisturbed flow and the second is the well-
knowvn linearized or small perturbation compressible flow (Prandtl-
Glauert solution). The procedure for obtaining successive terms is
outlined by Ackeret (reference 3) and extended by Kaplan (reference 4),
who applies it to a bump with no stagnation points and to a circular-
arc profile. The higher-order terms were shown to be of greater con-
sequence as the Mach number increased.

Recently Perl and Klein (reference 5) applied the Prandtl-Ackeret
procedure, without specifying beforehand the parameter of expansion,
to flows about thin bodies at transonic speeds. In their analysis 5
the flow equation is transformed to a new set of coordinates in which

it is effectively expanded in powers of Bz =1 - 'Moz , vhere My 1is
the free-stream Mach number. TIn the transonic range (B2 - O) , the
lowest order terms in Bz are dominant, and the transonic part of the
flow equation is easily extracted.

The resulting transonic equ%tion does not of itself preclude size-
able perturbations as long as B~ 1is chosen sufficiently close to
zero; however, the Perl-Klein process uses the customary small pertur-
bation boundary condition, so that the solution of the complete prob-
lem - differential equation and boundary conditions - is termed the
transonic limiting solution, limiting in the sense of Mach number near
unity and geometric parameter near zero. This limiting nature of the
solution is further emphas:n.zed by the form of the expansion parameter,
vhich is found to be simply Karman's transonic similarity parameter
(reference 6), a quantity which combines the three definitive character-
istics of the flow: the ratio of specific heats {that is, the type
of ga.s) s the free-stream Mach mumber, and the geometric parameter.

Although the iteration process greatly facilitates the solution
of a nonlinear problem by substituting for it a series of linear prob-
lems, it, in turn, raises the difficult question of convergence of the
series solution. The present analysis was made at the NACA Lewis lgb-
oratory to extend the calculations necessary to estimate the convergence
of the iteration process of reference 6 where it is applied to two
profiles, the ellipse and the Kaplan section. In particular, it will
be found that the successive approximations suggest convergence not
only of completely subsonic flows but also of some isentropic mixed
flows.

N

There has been some dispute concerning the stability of the osecond
type flow (see the résumé of these discussions by Sears, reference 7);
one of the latest contributions is a stability investigation by Kuo
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(reference 8), which indicates that decelerating transonic flows are
unstable for a certain type disturbance. The result of the instability
is the formation of a terminal shock in the. supersonic region, with a
consequent asymmetry. Some British measurements (references 9 and 10),
however, indicate that small supersonic.regions not terminated by shock
waves may exist, or if shocks do occur, it 1s possible that they may

‘not change the flow greatly from the isentropic pattern, provided that

the free-stream Mach number is only s8lightly greater than critical.
The isentropic mixed flows are therefore dealt with herein under the
assumption that they are indicative of the nature of some real flows.

Another unpleasant feature of iteration methods, in addition to
the question of convergence, is the large amount of labor involved. In
obtaining the higher approximations by the present method, it is con-
venient to make certaln simplifications in the differentisl equation
so that the lebor does not become too great. The justification for
such changes and the limitations they impose on the solution will be
discussed as they arise.

SMALL-PERTURBATTON TRANSONIC FLOW
In reference 5 it is shown that the partial differential equetion

governing two-dimensional, irrotational, compressible flow may be writ-
ten )

(B2oy, + q’w)[ - L w2 (20, + 0,7 + cpyz)]

M

2y Y-l 4 2 2 2 2
=[I‘M (20¢ + 0x7) + Mocpy]cpxx+Mo Py Oyy + 2Mg (1 + Px) PyOpy
(1)
where

] 2

B =1 - My
@ perturbation potential
T ratio of specific heats of the gas

Mb free-stream Mach number

I‘M=Moz(l’fT—;'lMo?') ,




4 NACA TN 2511

and the free-stream velocity has magnitude unity and the direction of
positive x. (A complete list of symbols is given in the appendix.)
If the flow is over an isolated.body whose surface is defined by

vy =7 g(x)

where T 1is the thickness ratio, the boundary conditions on the per-
turbation potential are

I

Py T(1 + Py) g.(x) at y=7 g(x)
(2)

¢y =0 at X2 + yz =

Px

For purposes of solution, it is desirable to write the second-order
terms of equation (l) in normel form, as may be accomplished by the
Prandtl-Glauert transformstion. If the transformation is modified
slightly, however, the coefficient of a nonlinear term of the same
_order in B also becomes independent of flow paremeters. The modi-
fied transformation is

X =X
n =By (3)
Ty
F(x,q) = = o(x,Y)
B

and it transforms the problem consisting of the differential equation (1)
end the boundary conditions (2) into

2
(1 - 2F)Fyyt Fpppy = B ((r-l)% FXAF T FJ,:BFJcx

2 2

4 [r-1 Mo 2 v-1 Mb Mo
B 2 T > Fx:AF + 2 1 > nzF + 2 ;—E'FXFHFXH +
M M M
2 . 2 '
6 (v-1 M _ 2 My 2y
= — 7 °NF + —5 F
B 2 27 27171 (4)
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Ty
Fp=(1+0) - g at 0= pre(x) (5)
B~ :

Fy=Fy =0 st X2 + 12/p% = = (6)

Figure 1 1s the reciprocal of the transformation coefficient »I‘M/ BZ of
equation (3).

A transition is now made to the small-perturbation transonic prob-
lem. For ‘transonic speeds, the parameter B2 approaches zero so that
the right side of equation (4) mey be neglected. Because of the non-
linearity of the right side, omission of these terms is especially
Justified if the perturbations are smell. If the body considered is
thin (1 >>t) and there are no stegnation points, ¢,<<1 and the

velocity @, may be neglected in boundary condition (5). For flows in
vhich stagnation points occur, the effect of these stagnation points

is assumed negligible in the region of interest in the flow fleld.
Furthermore, in boundary condition (5), because the product B is a
very small number and because (as will be shown) the solution for
equation (7), which follows, has no singulaerities on the x-axis, it -
is assumed that the condition (that the velocity normal to the body is
Zero) may be made on the x-axis rather than on the body itself. This
assumption is Justified in reference 5. Consequently, the small-
perturbation transonic flow problem is defined by

(1 - 2Fry) Fyx + Fpp = O -(7)
1T
2 . 2.2 ‘ ’
Fy=Fp=0 x4 + 14/pf = » (9)

For values of Fy < %, the flow equation (7) ié elliptic and for

Fx > % it is hyperbolic. ZIn ‘figure 2 the pargbolic velue of the per-

turbation velocity, Py = g_I‘_ (or Fy = le_.) » 1s compared with the excess "
M
of the critical veloclity over free-stream velocity, that 1s, the pertur-
bation velocity at which a flow becomes locally sonic, as calculated
from the Bernoulli equation. For such values of My <for which the two
curves substantially agree, the differential equation (7) may be expected
to describe mixed flows properly. The agreement is acceptable in the
range 0.9 < My < 1.1, which is approximately the range of aceuracy which
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would have been suggested by equation (4). It is also observed at this
point that if the error in the boundary condition (8) is to be limited
to 10 percent as compared with the exact boundary condition (5), it is
f%u Thus an examination of both the differential
equation and the boundary condition indicates that flows in the transonic
domain will be described sufficiently accurately only if they lie in the

intervel 0< Iq’xl%'

necessary that o, <

The flows to be solved herein will be limited to those gbout bodies
vhich are symmetric about the x- and y-axes. A limitation to subsonic
free-stream Mach numbers is also necessary in order that the trans-
formation (8) does not become imaginary. The results of the present
method for high subsonic speeds can be applied, however, to slightly
supersonic free-stream flows for which the detached shock wave is far
ahead of the body and the Mach number dovmstream of the shock is as
much below unity as the Mach number upstream is above unity. In this
sense, the analysis is gppliceble to the entire range of transonic
velocities.

TTERATTON PROCESS

For convenience in describing the body, a transformation is made
to elliptic coordinates, one of which is cyclic and can indicate posi-
tion around the circumference of the body. These coordinates are com-
pared with cartesian coordinates in figure 3. The equations defining
the transformation are

X = cosh s cos t (10)
. 71 = sinh 5 sin t (11)
J(ﬁ_l’tl> = cc)sh2 8 - c052 t = si’nh2 s + Sinz t (lZ)

J

J
g,t
X,y-coordinates with respect to s and +. The reciprocal of the
Jacobian of the transformation is plotted in figure 4 as a function
of t <for several values of s.

where J(%—ﬂ) is the Jacobian or functional determinant of the

The first derivatives of the potential in the new system are

Fy = (sinh s cos t Fg - cosh s sin t Ft)J'l (13)

F
1

(cosh s sin t Fy + sinh 8 cos t Ft)J‘l (14)
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which become at the axis of the body

1
Fx= - st Tt (15)
1
Ty = 5% T (16)

Substitution of these into the boundary condition (8) yields
Fg = -~ = & 5§ =0 (17)
Boundary condition (9) becomes

Fg=Fi =0 g = ® (18)

An exact transformation of the flow equation (7) would result in
the Inverse Jacobian appearing in the nonlinear term, and it would be
necessary to expand it in a Fourler geries before employing a method
of solution involving the separation of varisbles. The process used
herein would then require the solutlion of an infinite number of ordinary
differential equations. In order to simplify the analysis and to reduce
-the computational work thet would ordinarily accompany such an expan-
slon, only its first or constant term is retained. That is, in the
transformation of equation (7) to elliptic coordinates, the Jacobian
is set equal to 1, which is the first term in its expansion about the
point 8 =0, t = ﬂ/Z. Of course, this simplification will restrict
the region in which the equation is valid. A further restriction on
the size of the region of validity is made by restricting the calcula-
tions to veloclities on or near the surface of the body; thus s = 0 in
the differential equation.

If the relation

F 1

v+ Fpp = J

M Fes + Ftt)

and equations (13) and (14) for the derivatives of F and F
used, equation (7) with the approximations

7 are

Jg= 1

sinh s = O
and

cosh 5 = 1
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mey be written
= - 2 gin®t F i(int].?)
Fgg +Fygg = - 2 8 t 3¢ (8 t

- 2 sin% FyFy; - 2 sin2t cos t FyFy (19)

This equation is proposed for use as a description of the flow in a
region gbout the origin whose boundary is set by the criteria

lJ‘l -1} <0.10 and s <-0.1. Such a region in the xn-plane is shown

in figure 5, where for comparison a 1lO0-percent-thick (in the xy-plane)
Kaplan section is included as a typical profile. The length of the
rectangle is seen to be about 0.3 chord. ’

With the change in the region of validity of the differential
equation, there must be a change in the boundary conditions to corres-
pond to this region. The surface boundary condition (7) may be
retained as is; therefore only the outer boundaries (dashed rectangle
in fig. 5) of the region lack boundary conditions. As a substitute
for conditions on these boundaries, the boundary condition (18) at
infinity is taken as a guide to postulate that, in the restricted
region, both Fg and Fy must decrease with increasing s. The fav-
orable comparison with more complete solutions shows that this con-
dition prescribing monotonic character of the potential derivatives is
sufficient. These comparisons are made in subsequent sections.

The method of solution of the problem, as formulated by the 4if-
ferential equation (19), the boundary condition (17), and the condition
of monotoneity in s, is to write the transformed potential F as an
infinite series

1 2 3 ,
FEF+F +F +. .. (20)

where it is assumed that the succeeding terms become progressively
smaller at such a rate as to insure convergence of F and its deriva-
tives. Definition (20) is placed in the flow equation (19), which is
then arranged as follows:

2275
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1 1Y 7
P, +Fy 0
2 2 11 o 11
+Fgq + Fyy - 2 8in%% P Fyy - 2 sint cos t FyFy
3 3 21 12 12

+
=
[
53
o+
=
ct
ct
-~
]
-

- 2 sindt(FyFyy + FiFyy) - 2 8in®t cos t 2 FiFy

n n n-1 v n-v n-1 v n-v

+FBB + F‘t’b - 2 sinst P FtF‘t't -2 'sinz'b cos t 2 F.th
: v=l | .oy=1
J U

(21)

This arrangement indicates that the equation should be divided for pur-
poses of iteration into a sequence of equations each corresponding to
one line of equation (21). In this way all terms which have the same
total superscript value are grouped together; this procedure will later
be seen equivalent to separating out terms of the same order in the
Kérmén similarity parameter.

The boundary condition on the body is also divided in a particular
) 1
way among the terms in the series solution. The first term F makes
the total conmtribution:

1 Ty
F, = - Es— & 8 =.0 (22)

whereas the boundary conditions for all other terms are homogeneous:

n -
Fg =0 '8 =0 n > 2 - (23)
n n
The condition of monotoneity requires that all Fs and Ft are monotone
decreasing in s.

1
FIRST APPROXIMATION, F

The first approximation differs from subsequent approximations in
that 1t requires the solution of the homogeneous Laplace equetion (first
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line of equation (21)) with a nonhomogeneous boundary condition (22).
Higher approximations. involve the solution of nonhomogeneous, or Poisson,
equations with homogeneous boundary conditions. For this reason and

to obtain the necessary start in the iteration procedure, the first
approximation is treated separately.

The solution of this first iteration, which takes account of the
monotoneity of the derivatives and of t as the cyclic coordinate, is

1 ]
F= % =8 (o cos kt + wy sin kt) (24)
k=1 -

Before this form is introduced into the boundary condition (22) , the
function g (0 ,t) is expanded into a Fourier series and written

g (0,8) = E8;sin jt (25)
; .

In conformance with the restriction to bodies which are symmetric about
the y-axis and about which there is no circulation, no cosine terms
appear in the expansion. The Index Jj 1s limited to odd values

because of the symmetry of g gbout + = .’2! The introduction of expres-

sions (24) and (25) into the boundary condition on the body (22) leads
to .

-3 T ©
- I k(o cos kt + ayp sin kt) = - —zﬂ Z J&j cos jt (26)
k=1 ; g J=1 .
J odd only

It follows that

T

1 -] )
- Y -ks
F= 3 E By e cos kt (27)
k odd only
1 T

The nature of the dependence of F on

BSM’ a quantity combining

the entire dependence of the first approximation on the parameters of
the flow (reference 6), has the consequences immediately observed from

equation (21) that

2275
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™~
2 T]_"M 2
F*\=3
B
3 WA
M
Fe = > (28)
B
"\n
Fe\73"
B J
The quantity
Tr
_ "M
K==
B.

is rgcognized as the similarity parameter of reference 5, and reduces
to Kermfn's similarity paremeter (reference 6) as My - 1. Hence, as

previously claimed, equation (21) is the ordering in powers of K with
respect to this parameter. The similarity parameter is plotted as a
function of MO for various T 1in figure 6, which is reproduced from

reference 5.

n n ‘ .
Writing F = fKn gives the perturbation potential, by the trans-
formation (3), as

12 3
0=% £+ K+ K2+ ..

m

%l:( ; By e“ks cos lt:t) + fzK + f5K2 + .. ] (29)

k=1

The first term inside the parenthesis represents an incompressible flow.
Hence, for very small values of T, for which X 1s also small, the
transonic potential (29) reduces to the Prandtl-Glauert rule.

HIGHER APPROXTMATTIONS

n .
Inasmuch as all the F beyond the first sabisfy the same general
form of differential equation and have the same boundary condition, it
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n
is possible to treat the general form of. F rather than each approxi-
mation separately. In the following discussion, an induction argument
will be used to show that every term in the series for the transformed
potential has the form )

AMp+3)  A(p43)

A A -3 -3 A A A 2 -ps
F=K z z (I.I.P’+Ml.ps+Nrps + ... )e cos Tt
r=1 P=
: (30)
r odd only
IR A

where Ly, Mpp, and Npp are constants and u is the number of terms

in the expansion (equation (25)) of g(t), the function characterizing
the shape of the body. The main part of the argument is to show that
if equation (30) is true for all A < n, then it 1s also true for

A =n.

From equation (21) , the differential equation satisfied by any

n
term F (n>1) is

n n n-1 v n-v n-1 y p-v
o TFep=- 2 sin3t zil FiFyt - 2 sin2t cos vz—-:l FiFy (31)
v n-v
Use of the postulated form (30) for F and F leads to the expan-

sion for (31),

2275
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, v(p+3)  (n-v)(p3)  v(ut3)  (n-v)(p+3)
n n K]:]. n-1 -3 ‘ -3 C =3 - *
Fog +Fep = -5 Z z z z z

v=l m=1 p=1 k=1 r=1

(;.m+sl\t’11{m+52;m+. . ) (1121;.;+s§11,-;+32§;;+,

C)

e-.(P-l-m)S E-3krz-kr) cos (k+r+l) t + (-3k1'2+kr) cos (k-r+l)t +

(Skrz+kr) cos (k-r-1)t + (Zf)lcrz—}cr) cos (k+r-1)t +
(kr+kr2) cos (k+r+3)t + (kr-kr2) cos (k+r-3)t +

(-kr+kr2) cos (k-r+3)t + (-kr-kr?) cos (k-r-3)€]

k, r odd only

(32)

The right side of the foregoing equation is the sum of products involv-

v v v

" ing the constants L9ons Mems> Mgy - - -5 Powers of s, exponentials in

8, and cosines of angles of multiple t. Accordingly, after all five
summations have been accomplished and regroupings made according to
povers of s, exponentials in s, and multiples of +, the equation

will- be
n(p+3) n(p+3)
n n n -3 -6 n n 2n -3s
Fog TP =K z 2 (Ah,j + Sth + 8 Chj +...)e cos ht
h=] j=a
. (33)
h odd only
If a solution )
n(p+3) ’
n -3 n
F=x" 3 ap (s) cos ht (34)
h

h odd only
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is assumed, the coefficient of each harmonic term in (33) must vanish.
Thus

n(p+3)
6_2 n on -6 n i
—th(s)-hqh(s)= p (%J+3th+schj+...)e"35
ds J=1
(35)
h odd only
The particular integral of this equation is
n
n -js Aihhse-hB
+
" s Ahj 2n
- - 2
2 njsejs+ zjejs ...n e-h's(.s_.+._§_+
P (jz_hz)z 4,2
Z‘.nje_'js 62 4 Als_ 63"'211‘, (3+2+i Fou. .
J.iéh jZ_hZ jZ_hZ (j hZ)Z 6h 4hZ 4_h
(36)

Here the notation 32 refers to a summation over all values of

J#h D e n
except J = h. The complementary function is Gue ., where Gy, may
be found from the boundary condition on the body (23):

n
n
ap
- h +(.._h.) = n> 2 37
G +\ 5 =0 > (37)

Then

£ZZ

(n
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n
n ap n
1 h -h
qh - H (E.-S_-)s=0 © ° * Ph
n(p+3)
-6 n n n
= jz‘,_l (th + 8Myy + SZNhj + ssghj + .. .) ed8 (38)
where
n 1 n n n sz+2h2 -
I == + i 5 +Chs 55—+ . .+ .
n 1 n n 232) n [ 63°+2n? 43
= - -J +By <L-— + - + R
i#h n(12-n?) g *Bn; 52p2 . “n3 (52022 (522
mn 1 n 1 n 1
Ahh————+th———-+Chh——+ e . .)
2h? and an*
n . 1 n j n
g = By + j +
37 i Pt \ M LR Cn;
n n n n
1 1 1
Mp = - <Ahh ot —3 * — )
2h Byn 4h2 Cnn 4..h2
N 3 =L _¢
= +
Nh,j jyéh 32 h2 hj
1l n n
1 1
My = - ( — + Cy3, —= + )
Bnn in hh 4].'-12
n n 1
ohh=~chhéi+' - (39)



16 NACA TN 2511

(The maximum velue of h for any n in equations (38) and (39) is
n(p+3)-3.) Finally, if equation (38) is placed in the assumed form (34},

the nth approximaetion becomes

n(uf) n(p+3)
N - -3
T A L S S
h=1  3=1
(40)

h odd only

which is exactly the form postulated in equation (30).

v .

It has been shown that if F has the form (30) for all v < n, it
will also have that form for v = nj; there remains only to test this
form on a particular approximation in order to complete the induction
proof. If the second approximation is taken to correspond to the
nth approximation of the proposition, a comparison of all previous
approximations (equation (27), in this case) indicates that the nth
(second) and, hence, all approximations .subsequent to 1t must obey
the form (30). The fact that the method of solution for the first
approximations differs from that of subsequent approximations does
not interfere with the argument.

The actual mechanics of the itersation process have been derived in
the foregoing development and are outlined by equations (32), (33),
(39), and (40). For example, after the first approximation has been
obtained, the differential equation for the second may be found by
setting n = 2 1in equation (32) and letting k, r, m, and p assume

1

values in accordance with the form of F. After all the coefficlents
of each harmonic on the right side have been gathered, the differential
equation will have the form (33). The application of the formula (39)

2 2
ylelds the constants of the solution (40) in terms of the XL Bpjo
1 1 ‘oz 2
. « « of the differential equation. The Lh,j’ Mago ¢ -« Injo th,
' 3 3

. . are then known and are sufficient to determjlne the th, th, . .
if the foregoing process is repeated.

MAXTMUM VELOCITY INCREMENT AND CONVERGENCE

For flow over a profile symmetric about the y-axis, the maximm
velocity increment occurs at the midchord. At the critical free-streanm

SL22
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Mach number, the flow will be sonic at the midchord, and for higher
free-stream Mach numbers, a locel supersonic region will develop.

Connected with the formation-of this region is the question of
convergence of the series obtained from the iteration process to repre-
sent the maximum veloclty increment. This question of convergence is
especlally important because the maximum velocity increment is expected
to be the first veloclty component at any point in the flow to diverge,
and this divergence signals the fallure of the iteration process to
serve as a method of solution. If several terms of a series are known
and subsequent terms are assumed to decrease in the same manner, an
estimate of the domain of convergence may be made as follows: )

The limiting (Tt =+ 0, x = O) perturbation velocity at the midchord
is a sum of terms (equations (3), (15), and (30))

n 2 n
1 o (B
lim @ - — |=—TF
x=+0 * [Sint ot (rM >:|5=0

v+ 0 t=n/2
h-1
T pn-1 y 2
= 5K ﬁ Z Lyy h(-1)
J
n
= T o-1
=§.Kn p - (41)
or
n
T -1
1im ‘Px=E2Kn o ‘ (42)
X =0 n )
y=+0
n - h n

The p are seen by definition to depend only on the th which intro-

duce the effect of the shape of the body. The series (4:2) will converge
if the limit of the ratio of successive terms is less than 1 for all n:

\
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or
n-1

K; = g.1.b. —g——- oL (43)

P

vhere K; 1s +the maximm value of the simlilarity parameter for which
convergence of the iteration process will occur.

The so-called potentisl 1imit Mach number, or free-stream Mach
number for which the solutlion diverges for any <, 1s defined by

or .

2(1+%EM_LZ) K .
(1—1412)3/2 T (44)

SURFACE VELOCITIES

For small disturbances such that the squares of the perturbation
velocities may be neglected compared with unity, the transformed limit-
ing perturbation velocity on the ellipse is

1
Fy (X,O) = - Fe (O,t)
1 n
= 2 K3 2 Iyg hosin ht
sin t n3 J

or, in the x,y-plane,

i T -1 I
9, (%,0) =gzn 5 L K 2 Z Lypy bhsinht (45)
:n - j

quua'bion (45) will hold only on that portion of the surface along which
J =1 (figs. 5 and 6).
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The local Mach number at the midchord is given for the small per-
turbation case by equation (27) of reference 11:

M2 - 1=-p% 4 2Ty @y (0,0) (46)

In a previous discussion concerning figure 2 it was seen that the
hyperbolic region of the limiting equation (7) represemts very nearly
the region of supersonic flows for a perfect fluid. Therefore the
parebolic curve .

2

=1 =B
Fy=3 OF Oy-= 2T (47)

can be used to outline the supersonic region or to find significant
points on it In the physical plane. Whether or not an iteration solu-
tion can correctly describe a supersonic flow may be questioned, for

as performed here the lteration procedure is essentially the solution

of a set of elliptic equations. The applications which follow, although
not answering this question directly, do suggest convergence of the
solutlion in the hyperbolic region.

For any thickness ratio T +the critical Ma.éh number, or lowest
free-stream Mach number at which some point in the flow field becomes
sonic, 1s given by

=3

i
= =K
B

or
M2(1+t-l-mc2) K

- 2 T (28)

(1 -n)°

APPLICATTON TO ELLIPTIC CYLINDER

The expression that describes the upper surface of an ellipse
vhose major axis colncides with the direction of flow is

T g(x)r = 'c/\/l - x4

Tsint (s *0)-

¥
(49)
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Tt follows from equation (27) that

1
F=Ke " cos t (50)

Subsequent approximations through the sixth have been calculated

by means of the iteration process previously described. The coefficients
n

n n n n n n
Ah;j’ th, and Chj and. the th, th, Nhj’ and Ohj calculajted by
means of equations (33) and (39) are presented in table I in matrix
arrangement. From equation (41),

oy (0,0) = % (1 + 0.35237 K + 0.36986 K> + 0.51836 K° +

0.83711 K* + 1.42014 K° + . . . ) (51)

For comparison, the maximm disturbance veloclty as determined by
the first three approximations of the iteration solution herein des-
cribed is plotted (fig. 7) with the exact solution of Hantzsche (ref-
erence 12). Hantzsche's iteration process is based on an expansion of
the stream function in powers of the thickness ratio. The agreement
between the two methods appears close enough to justify the calcula-
tion of higher approximations for obtaining a better estimate of the
potential 1imit Mach number.

An estimate is made in figure 8 of the largest value K; of the

similarity parameter for which the series for the maximum velocity
increment will converge. The broken line joins successive estimates
of K; obtained by comparing terms by means of a ratio test described
in the sectlion "MAXIMUM VELOCITY INCREMENT AND CONVERGENCE." An
examingtion of the slopes of the segments of the line indicates that
the limiting ratio of these slopes, for large n, is sbout 1/2. It
it is assumed that these slopes continue to decrease in a ratio 1/2,
the greatest lower bound of the broken line curve cen be calculated
by a geometric progression. The estimated greatest lower bound of the
broken line is then gbout ‘K73 = 0.56.

That the solution converges even when some of the flow is super-
gonic (hyperbolic) is indicated in figure 9, which shows the contribu-
tion of each approximation to the maximum velocity increment for vary-
ing X. Supersonic flows lie to the right of the parabolic curve and
the intersection of this curve and the sixth approximation marks the
value of the parameter K at which the transition from totally sub-
sonic flows to partly supersonic flows occurs. This transition
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point, K, = 0.395, is also very evident in figure 10 as the intersection
of the curves, for several values of M,, of the local Mach number at
midchord (equations (42) and (46)).

The surface velocity on the ellipse for three values of K is
presented In figure 11. The parabolic line, equation (47), is included
in each case for comparison. Thus in figure ll(a) all velocities are
subsonic, whereas figure 11(b) (K = 0.4) shows a partly supersonic
flow. This is in agreement with the previous calculetion showing
transition from subsonic flow to supersonic flow at K. = 0.395. The
longitudinal extent of the symmetric supersonic reglon is seen to be
gbout 1/10 chord, based on six epproximations. The last of this series
of figures (fig. 11(c)) is for a velue of X near K;. Although the
series for the velocity increment may be converging, it is evident
that near the midchord the uncalculated approximations are not neglig-~
ible for this value of K. The width of the supersonic region is
greater than the extent of the region of accuracy of the calculations.

Curves of critical Mach number and potential 1limit Mach number
against thickness ratio have been plotted in figure 12 using equa-
tions (48) and (44), respectively.

APPLICATION TO KAPLAN BUMP

As a second example, the iteration process is applied to the cal-
culation of noncirculatory flow past a Kaplan section; this problem
has been treated in an exact manner to three approximations in refer--
ence 4. The Kaplan section has no stagnation points (fig. 5) so that
nowhere is the boundary condition singular. Its parametric repre-
sentation is (reference 4), :

X=cos t

(52)
T
y=7 (3s8int - sin 3t)
Application of equation (27) yields A
1 K -8 -38
F=7 (3¢ " cos t - e cos 3t) (53)

The secoﬁd, third, and fourth approximations have been calculated
according t6 the procedure given in the section "HIGHER APPROXIMATIONS"
: n n
and ded t
& are recorded in gble_gi as arrags of the constants th’ th, and

Nhj' The constants Ahj’ th,"and _th represent the nonhomogeneous
terms of the differentialﬂequations (33). .
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The chordwise perturbation-velocity distribution at the surface 1s
plotted in figure 13 for comparison with the result of Kaplan (refer-
ence 4) for T = 0.10 and My = 0.75. The agreement is probably suf-
ficient from a practical standpoint to Justify the labor-saving limit-
ing processes that have been made in the iteration process.

An estimate of the limiting value of the parsmeter K <for which
the series for the maximum velocity incrément will converge is made
in figure 14, where the ratios of successive coefficients in the series
Por the maximum velocity increment are plotted for the first four terms.
The series for (q’x)max to four approximastions is calculated from

equetion (41) to be

T (3
I E(ﬁ +0.81762 K + 1.15715 K* + 2.11564 K> + . . ) (54)

~

An anslysis similar to that employed on the corresponding series for
the elliptic cylinder indicates that the series (56) will converge for

values of K < 0.387.

The value X; = 0.387 is considerably above the value of K for

which the Tlow becomes sonic at the midchord, as given in figure 15 by
the intersection of the fourth approximation curve and the parabolic
curve. The converging nature of the successive approximations indi-
cates that this value of K, = 0.270 will be lowered only slightly
by increased accuracy from hlgher-order terms.

The variation of the local Mach number corresponding to the maxi-
mum velocity increment has been calculated by means of equation (46)
and is plotted against the similarity parameter for several values of
free-stream Mach number in figure 16. The calculations are based on
four approximations. The velocity increment on the surface of the bump
is plotted as a function of distance along the chord in figure 17. Of
these, figure l7(a) shows the only completely subsonic flow. In fig-
ure l7(b) » K, <K =0.3 <Kj. Hence the flow is everywhere convergent,
but near the midchord there 1s a small supersonic region represented by
those values of (Fx)max gbove the parsbolic curve. For figure 17(c) B
the similarity parameter is chosen slightly larger than the estimated
meximum for convergence, Kj;, as obtained from equation (43) and fig-
ure 14; and, although successive gpproximetions still decreaese monoton-
ically, the curves of figure l7(c) should not be expected ultimately
to converge.

Pigure 18 shows the critical Mach number M, and the potential
limit Mach number M; as functlons of thickness ratio. For compari-

son, Mc and MZ as computed by Keplen (reference 4) are included.

The present calculations indicate that isentropic mixed flow is
restricted to a considergbly smaller range of Mach number.

2z 7=
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CONCLUDING REMARKS

An iteration procedure similar to that employed in the Ackeret-
Prandtl type procedure has been utilized in the calculation of the
symmetric-type transonic potential flow for an elliptic cylinder and
a Kaplan section. In order to obtaln an estimate of the region of con-
vergence of this type of solution, the work has been carried through
six approximetions for the elliptic cylinder and through four approxi-
mations for the Kaplan section.

The results indicate that the iteration solution converges for a
range of the similarity parameter for which supersonic regions exist
in the flow field. ZFor these hyperbolic regions, the nonlinear term
of the potential equation is not, strictly spesking, small compared
with elther term of the Laplacian. The iteratlon procedure presented
herein may therefore be applicable to a greater range of disturbance
velocities than would be indicated by I'ts method of formulation, in
which the nonlinesr term is considered a perturbation on the Laplaclan.

The results have been presented in conformity with the transonic
similarity law. The essentlal characteristics of a flow may then be
presented In a simple and dlrect manner by classifying the flow with
respect to significant values of the similarity parsmeter, for example ’
the critical and potentiel limit values.

T.ewls Flight Propulsion Laboratory
Netional Advisory Committee for Aeronautics
Clevelend, Ohio, June 26, 1951
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The following symbols are used in this report:

A,B,C

c*
F

f

g

g.1.b.

X0
J(S )t)

K

8,t

X,y

APPENDTX - SYMBOLS

constants

critical velocity

perturbation potential in x7y-plane

function of Xx,7

thickness distribution along chord

greatest lower bound

functional determinant, or Jacobian

transonic similarity pasrameter

NACA TN 2511

critical value of similarity parameter

potential limit of similerity parameter

constants, identified by superscripts and subscripts

local Mach mumber

criticel Mach number
potential limit Mach number
free-stream Mach number
nunmber of approximations
particular integral
function of =

elliptic coordinates
free-stream velocity

cartesian coordinates

1 - M2
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@

W,p,0
Subscripts:
X,¥,7,8,%
h,J,k,m,p,r,v
Superscripts:

A,n,v

l . W&ng, Chi-
Fluid.

r-1

Moz(l + ‘fz MOZ)

ratio of specific heats
Laplacian

constant

transformed y-~-coordinate
thickness ratio
perturbgtion potential

constants, identified by subscripts

indicate partial derivatives

sumnation indices

number of approximation
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TABLE I - FIRST APPROXTMATION FOR ELLIPSE
1 1 1
() A 34=B 7,= (b) L 43 = 1.0
J J
TABLE IT - SECOND APPROXIMATION FOR ELLIPSE
2 2
(a.)AhJ (b)th
J 2 1 2 3 4
LA h
1 }-0.50000 1 0.33333 | -0.16667 -— - -——
3 0.75000 3 — -0,15000| ©.10000 -— -
5 |-0.25000 5 — 0.01190 _— -—- -0.00476
TABLE IIT - THIRD APPROXIMATION FOR ELLIPSE
3
\(tat)‘l\.,]mj
h 2 3 4 5 6
1 |-0.33333 | -0.18571 | 0.22500 - 0.00595
3 0.50000 | 0,86667 | -0.67500 _— -0.04167
5 |-0.16667 [-0.,15238 | 0.67500 -— 0.08929
7 -— 0.53095 | -0.22500 _— -0.19118
9 ——— ~0,05952 - -— 0.02381
3
D) L
(®) Ly,
J 1 2 3 4 6 7 9
h .
1 0.23084 | -0,11111 { -0.02321 | 0.1500 -— 0.00017 -— —_—
3 — -0.10000 | 0.15018 |-0.09643 -=-  |-0.00154 - ——
5 —~—— 0.00794 | 0.07202 | ~0.07500 | 0.00388 | 0.00812 _— _—
7 -— —— -0.01327 | 0.00682 ——- 0.00595 | -0.00331 ——
9 — ——— 0.00083 -—- -=- [-0.00053 — 0.00007
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4
(a) A B3
h" 2 5 4 5 8 7 8 9 10
1 0.24520 | 0.09288 | -0.16301 | 0.04885 | 0.01268 | 0.00436 | 0.0m079| -— | 0.00007
s | -0.21480 | -0.43335 | o.31665 | 0.0e354 |-0.02355 | -0.02820 | -0.00838 | — -0.00007 '
5 0.07160 | 0.57682 | 0.19904 |-0.52948 | 0.08849 | 0.,02305 | 0.03632| -— | 0.00024
7 — | -o0.26551 | -0.75659 | 0.80078 |-0.07488 | 0.05935 | -0.07085| --—- [-0.00132
9 — 0,02877 | 0.49454 | -0.38547 | 0.02823 {-~0.10221 | 0.08084| --—- | 0.00262
11 -— —- | -0.09785 | 0.04100 — 0.04808 | -0.01895 | --- [-0.00222 -
15 —— ——m 0.00653 — — | ~0.00464 — — | 0.00069
4
CI:)B,,‘j
hJ 4
1 0.16250
‘ 3 | -0.48749
5 0.48749
7 | -0.18250
4 .
(¢) L nj .
B 1 2 3 4 3 8 7 8 9 10 11 12 13
1 | o.22498 }-0.09547 | -0.02332 | 0.01018 | -0.00414 | -0.00072 | -0.00018 | -0.00006 - [-0.00000| ~-- - -—
) —— |-0.08582 | -0.04018 | 0.06871| -0.0029¢ | 0.00241 | 0.00041| 0.00034| --- | 0.00000| - — —
5 -— 0.00882 | 0.0720% | -0.05206| 0.01838 | -0.01209 | -0.00192 | -0.00188 - [~0,00000] o-- ~— —
7 -— -— | -0.01328 | -0.04347| 0.00875 | -0.01252 | -0.01829| 0.00942 — 0.00003 | ——- —— —
9 — — 0.00085 | 0.01525{ -0.01377 | 0.00125 |-0,00639| 0.00718 | -0.00132 | -0.00028 | -— .- —
1’ -— _— -— |-0.00187| o0.00085 -— 0.00154 | ~0.00088 - |~0,00021) 0,00012 | o~ —
13 -— -— — 0.00009 — — | -0.00008 — — 0,00002 |  wu- ~— |-0.00000
@) ¥y
h‘ 3 4 5 8 7
1 .- | -0.02267 — — —
5 |-0.14445] o0.13928 -— — .
5 —— 0.10833 | ~0.10580 [ —- —
7 -—— | -0.00983 — o |o.c0es2

SL22



TABLE V - FIFTH APPROXIMATION FOR ELLIPSE
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’

5
(a.)A.hJ

N 2 3 4 5 8 7 8 9 10 11 12 13 14

1 | -0.3019% |-0.19052 | -0.04166 | 0.16208 | 0.01136 | 0.00285 | 0.00531 | 0.00204 | ©0.00196 | 0.00004 | 0.00028 | «nc |  we-

5 | o.45289 | 0.89808 | 0.56485 | -0.7417¢ | ~0.11258 | -0.02851 | 0.02488 | -0.05858 | -0.00881 | 0.00041 |-0.00088 | --- | -

5 | -0.15098 |-1.18221 |-1.98026 | 1.18749 | 0.75422 | 0.01847 |-0.27262 | 0.16484 | 0.02082 | 0.00200 | 0.00088 | --= | =--

7 - | 0.54870 | 2.49445| 0.21288 | -2.59319 | 0.34671 | 0.49187 | -0.15302 | -0.05839 | -0.01005 |-0.00175 | === | -

9 -—-  |-0.06107 |-1.352017 | -2.07285 | 5.52576 | ~0.63624 |-0,11714 | -0,21780 | 0,10470 | 0.00885 | 0.00729 | --- | 0.00008
1 --- -~ | 0.28125 | 1.67598 |-1.95465 | 0.33485 |-0.34649 | 0.43170 | -0.09089 | 0.00799 |~0.01371L | -~ L0.00015
13 - ---  |-0.01847 | -0.48297 | 0.57619 |-0.03630 | 0.25889 | -0.20890 | 0.02862 |-0.018%7 | 0.0115% | --- | 0.00025
15 - — --- | 0.,06288 | -0.02882 | --- |-0.,04744 | 0.01872| - | 0.00802 [-0.00564 | --- [0.0001%
7 — — eee |-0.00327 | -— = | 0.00200| - - |-0.00079 | --- --- | 0.000085

: ~w
OF I
N 4 5 6 7 8 )
1 | o.4333¢ | 0.14341 | 0,19757 - | 0.00516
5 | 1.50002 | 0.08802 |-1.08850 | ~-- |-0.04010
5 |-1.30002 |-1,52956 | 2.2455¢ | --- | 0.17670 .
7 | 0.AS554 | 2.51517 |-2.04580 | =m  |-0.54108
9 eew  |=1.11344 | 0.66948. | --- | 0.28868 ‘
. 11 — | ome0 | - ---  |-0.08735

TTSe NI VOVH

62



TAHLY. ¥ - FIFTE APPROXTMATION FOB ELLIPEZ ~ Ocmolnded

© 2, \
N 1 2 3 " 5 6 7 8 ] 10 1 12 13 1 15 17
1 |o.28680 |-0,10084 |-0.023a1 |-0.01818 | 0.00824 | 0.00228| 0,00006| 0.00010| 0.00005 | 0.00002| 0.00000 | 0.00000| --- i~ - —
3 wee |-0,09088 | 0,31448 | 0,28580 | -0.04570 {-0.02153 | -0.00071| ©0.00C24 [-0.00083 | -0,00010| 0,00000 | ~0,00000| -t~ — - -
6 eee | 0.0071% | 0.07389 | 0,08341 | -0.41888 | 0,29128 | 0,00069 | -0.00613| 0.bo294 | 0.00028| 0.00002 | 0,00000( ~-- — i -
7 - == |-0.01582 (-0,07241 | 0.031%0 | 0.05421 | -0.02532| 0.00882 |-0.00478 | ~0,00111 | -0,00014 | -0,00008(  -~- —— -— ---
9 - -—- | 0.00085 | 0.02081 | 0.03348 |-0.07480 | o0.c1808| o0.02276|-0.02052 | o.008m | o.cooes | c.ooor| - | 0.00000 | -~ -—-
1n — —_ wem | =6.00240 | ~0.0173% | 0,02876 | -0.00485| 0.00585|-0.01078 | 0.00433 | 0.00078 | «0.00080| -v-  |-0,00000 | ~me ---
13 e — -~ | 0.000i2 { 0.008%5 |-0.0028% | 0,00080| -0.00248 | 0.00237 | -0,00042 | ©0,00038 | -0.00046| 0.00010 | 0.00001 | - ---
18 | - — - wun  [-0.00031 | 0,00005| -~ | 0,00030(-0,00014 | ~m- |-0.00009 [ 0,00004| --- ~ | 0.0000L |-0.00000 | ---
17 — - -— - | 0.00001 | --- e | ~0,00001]  --- — | 0.00000| ~m wem |-0.00000 [ ~-e | ~0,00000
oty <
N s n 5 8 7 8 9 10 n
1 ~ew |-0.02889 | 0.00698 | 0.00%e4 | ~-- [ 0.00008 [ --- - . 5
5 |-0.24m18 | 0.18578 | 0.00425 [-0.08615 | --- [-0.00073 | --- — — (o) Wy
8 | 0.14445 | -0.20545 | 0.20k24 | --- | o.coasm | -—- - —_ Em_'mm“ﬁ
7 —  l.o.ums |-0.00858 | 0.15757 |-0.02476 |-0.02874 | --- - —— "Ehu -0 bh,J g5
v —_ w— | o.o1088 | - am  l-0,01886 [0.01210 | ~nn —
1 - — {-0.00a25 | -— — | o.o01% | e— -=-  |-0.00038

SL22
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TABLE VI - SIXTH APPROXTMATION FOR ELLTPSE
6
- (a) & hj
N 2 3 4 5 6 7 8 9
1 |-0.55512 | -0.20367 | -0.54907 | 0.53760 | 0.52224 | 0.39212 | 0.01985 | ~0.00962
5 | 0.55268| 0.95047 | 2.16610| -1.13529 | -5.55878 | 2.24404 | 0.27821 | -0.05869
5 |-0.17756 | -1.26381 | ~3.67930| -0.80210 | 8.32920 | -3.82950 | -0.96660 | 0.19693
7 -~ | 0.58229 | 3.25792| 4.50042 | -8.29361 | 0.43150 | 1.86413 | 0.21831
9 -~ | =0.06528 | ~1.43991 | -5.29265 | 1.98519 | 6.03432 |-2.568489 | -0.95363
11 — - | o0.28437| 2.856%6 | z.82502 | -7.73804 | 2.34101 | 0.50983
13 ——- -~ | -0.02010| -0.75951 | ~2.64252 | 4.22655 |-1.11805 | 0.50443
15 - _— --- | 0.09828 | 0.97957 | -1.11033 | 0.22088 | -0.54201
17 — — --- | -0.00511 | ~0.18374 | 0.13964 |-0.01486 | 0.14855
19 _— o — -~ | 0.00776 |-0.00897 | --- [-0.00773
21 — — — --- | -0.00072 | --- --- | 0.00082
6
(8) A py ~ Comcluded
NUEEEL 11 1z 13 14 15 16 18
1| 0.00467 | ~0.00511 | 0.00088 | -0.00052 | -0.00014 |-0.00002 |-0.00000 | -0.00000
3 | 0.00801 | 0.01875 | 0.00047 | 0.00045 | 0.00043 | 0.00006 | 0.00002 | 0.00000
5 |-0.02668 | -0.05440 | -0.01173 | 0.00008 | -0.00080 |-0.00001 |-0.00007 | -0,00000
7_|-0.38775 | 0.17216 | 0.01806| 0.00866 | 0.00131 |-0.00007 | 0.00008 | 0.00000
9 | 0.69461 | -0.17444 | 0.00844 | -0,03544 | ~0.00290 |-0.00018 |~0.00005 | ~0.00000
11| 0.11262 | -0.17842 | -0.02885 | 0.03281 | 0.00916 | 0.00084 | 0.00007 | 0.00000
15 |-1.00872 | 0.39807 |-0.01228 | 0.02266 | -0.01671 |-0.00085 [-0.00029 | 0.0000L
15 | 0.66684 | -0.19573 | 0.05158 | -0.05514 | 0.01389 |-0.00059 | 0.00059 | -0.00003
17_|-0.12088 | 0.01812 |-0.03191 | 0.02680 |-0.00425 | 0.00115 {-0.00053 | 0.00004
19 | 0.00725 | -~-- | 0.00568 | -0.00239 | ~--  [-0.00057 | 0.00017 |-0.00003
21 --- rae  |-0.00035|  --- --- | 0.00005 | --- | o.00001
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(3]
TABLE VI - SIXTH APPROXIMATION FOR ELLIPSE - Continued Eﬁ
6
(b) B p,
B 4 5 6 7 '8 9 10 12
1 | -0.44175| 0.27651| 0.17244 |-0.21716 |-0.07427 | 0.00325 |-0.01077 | -0.00071
3 1.32524| 0.07448 | -0.95724 | 1.36008 | 0.22528 | 0.09495 | 0.02864 | 0.00142
5 | -1.32524| -2.37617 | 1.17188 |-1.02543 [-0.60779 |-0.40598 |[-0.11295 |-0.00071
7 0.44175| 3.51929 | 1.55575 |-3.43737 | 1.21433 | 0.34626 | 0.45626 |50.00399
9 -~- | -1.66999 | -3.93061 | 5.82295 |-1.13510 | 0.47585 [-0.84175 |-0.02074
11 — 0.17588 | 2.42446 |-2.77921 | 0.37754 |-0.89299 | 0.69364 | 0.02897 i
13 — -— | -0.46759 | 0.27615 -— 0.41725 [-0.20907 |-0.03169 .
15 - -—- | 0.03092 ——— -m-  |-0.03859 ——- 0.00947
;
(c) C y,y
J
h
1 | -0.38239
3 1.24277 - :
5 | '-1.43397
7 0.66918
. 9 | -0.09560

4
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TABIE VI - SIXTH APPROXIMATTON FOR EILIPSE - Continned
6
a) L BJ
hJ 1 2 3 4 5 6 7 8 S 10
1 0.34464 | -0.11857 | -0.02546 | ~0.05251 | 0.02720 | 0.01467 | -0.00949 |-0.00061 |-0.00011 | 0.00003
3 --~ | -0.10654 | -0.40107 | 0.52581 [-0.06792 | -0.15205 | 0.08802 | 0.00625 |-0.00046 | 0.00016
5 ——e 0.00846 | 0.07899 | 0.27792 |-0.66704 | 0.58684 [-0.18449 |{-0.03118 | 0.00119 | -0.00078
7 - --- | -0.01456 | -0.09487 |-0.12642 | 0.65280 |-0.67976 | 0.21063 | 0.01291 |-0.00314
9 o o 0.00091 | 0.02215 | 0.08919 | -0.06701 |-0.10896 | 0.08921 | 0.00838 | -0,01008
11 e ——— --- {-0.00271 |-0.02956 | -0.02921 | 0.09997 |-0.0392L |-0.02279 | 0.02609
13 — — — 0.00013 | 0.00527 [ 0.01955 |-0.03495 | 0.01085 |-0.00476 | 0.01374
15 — —— -—— ---  |-0.00049 | -0.00517 | 0.00631 |-0.00137 | 0.00373 |-0.00533
17 — —— — ——- 0.00002 | 0.00073 |-0.00058 | 0.00007 |-0.00064 | 0.00063
19 - ——- —— = ~~- | -0.00005 | 0.00002 — 0.00006 |-0.00005
21 ——- o — ——— ——- 0.00000 o -~ |-0.00000 .
(a) ghj - Conoluded

hJ 1 12 13 14 15 16 17 18 19 21
1 | -0.00004 | 0.00001 |-0.00000 |-0.00000 |-0.00000 |-~0.00000 --- _ |-0.00000 — -
3 0.00018 | 0.00Q00 | 0.00000 | 0.00000 | 0.00000 | 0.00000 o 0.00000 - -
5 | -0.00057 | -0.00010 | 0.00000 |-0.00000 |-0.00000 |-0.00000 ---__|-0.00000 - —
7 0.00239 | 0.00020 | 0.00007 | 0.00001 |-0.00000 | 0,00000 — 0.00000 ~—- -
9 | -0.00436 | 0.00001 {-0.00038 |-0.00003 {-0.00000 |-~0.00000 ---  |-0.00000 - —-
11 | -0.01128 | 0.00051 | 0.00068 | 0.00012 | 0.00001 | 0.00000 ~—- 0.00000 ——= ——e
135 | -0.00829 | -0.00073 | 0.00227 |-0.00062 |-0.00002 [-0.00000 - 0.00000 —- —
15 0.00188 | -0.00060 | 0.00098 |-0.00048 | 0.00001 | 0.00002 --- | -0.00000 —— -
17 | -0.00011 | 0.00022 |-0,00022 | 0.00005 [-0.00002 | 0.00002 |-0.00000 | 0.00000 - -
19 --- | -0.00005 | 0.00001L — 0.00000 |-0.00000 P 0.00000 | 0.0000L ——
21 - 0.00000 — ---  |-0.00000 — -~~ | -0.00000 - 0.00000




TARLE VI - S8TITH APPROXIMATION FOR ELLIPSE - Concloded

8
(e) My,
B 3 4 5 6 7 8 9 10 1 12 13 15
1 —ew | -0.02845| o0.01152| ~0.00258| -0.004s2| -0.00118| 0.00004| -0.00012]  --- | -0.00000]  --- —
5 | -0.15841| o0.18s32| 0.00485| ©0.00548| 0.03400| 0.00410{ 0.00132| 0.00051|  ~~= | 0.00001]  -m- —_—
5 - | o0.14725] 0.10597| -0.17789| -0.04273| -0.01558| ~0,00726 | -0.00151|  --= | -0.00001|  ~m- —
7 wem | -0.01339| -0.14864] -0.11867| -0.0z132| o0.04857| o0.01082| ©0.00887| --- | 0.00004]  -un —
g - —— | o.o02s82| o.08621| -0.18187] 0.08677| 0.05151| -0.04450|  --- | -0.00083| ... —
11 - —— | -0.00183| -0.02852| 0.03660| -0,00662| 0,02232 | -0.03305| 0.00811| ©.00168]  -wm -
13 - - wn | o0.00882] -0.002%0| --- | -0.00474| 0.00303| --- | 0.00127| -0,00087| .-
15 - - e- | -0.00028]  —-- wen | 0.00027| @ --- ee | -0.00002]  --= | 0.00001
6 ~NACA
(f) § hj .
N 5 6 7 9
1 —m | -0.01088 |  w-- -
3 - | 0.04605| --- —-
5 | o.118s1|-0.15038 | - —
7 e~ | -0.05148 | 0.12278 | ---
9 — | o022 | --- |-0.01322
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TABLE VII - FIRST APPROXTMATION FOR KAPLAN SECTION
1
(a) A hj =0
1
(b) L py
N d 1 3
1 0.75000 —
3 - | -0.25000
TABLE VIIT ~ SECOND APPROXIMATION FOR KAPIAN SECTION
2 2
8
@ Ky (3) 1
J
n 2 4 6
1 -2 -3 -1
3 3 ¥ 2
5 -1 -9 -4
' 7 0 3 5
9. 0 0 -2
2
. (®) T 4y
o8 1 2 3 4 5 6 7 9
1 | 0.32412 |-0.09375 - |-0.02813 - |-0.00402 - -
3 --- ]-0.08438 |-0.20566 | 0.18081 - | 0.01042 ——m -
5 — 0.00670 — 0.14063 |-0.05382 |-0.05114 — —
7 - — -—-  |-0.01278 -— |-0.05409 | 0.05367 —
9 _—- —— - — -—- | 0.00825 -~ |-0.00417




TAETE IX - THIRD AFFROXTHATION FOR EAFLAN SEOTICN

(a)A 1y
N 2 5 4 B 8 7 8 9 10 1 12
1 | -0.24308| -0.07838 | -0.34704| -0.07435| -0.18091| -0.28807] -0.20181| o.081m0[ -0.14087] —— —
5 | o.sessz| o.3e5e5| 1.22m44| 0.14304| -0.00612 o0.48850| -0.48405| 0.2441%| -0.88%48| --- | -c.0z108
5 | -0.13154| -0.48616 | -1,54488| -1.41706| 0.17657| -0.53128| 1i.0z708| <0.mmia| o.zveses| -~ | o.o17md
7 — | 0.28400| 0.4885( 2.10842| o0.1e300| 1.43784| -1.80276| o0.20788| -0.50862] ~=- | -0.08141
9 -— | -0.eg1| o= | -1.01775| -0.14824| -2.45765| 1.70002( -0.37881| o.96483] - | o0.cm3e8
3 - — - | o.0s0m| --- | 1.32190| <0.55588| o0.e7875| -1.08m2| == | -0.00844
13 - — - — -— | 0.24718|  —- | -0.pese8| ~0.13088] -~ | o.11280 )
15 -— - - — - - e | o.omses| - e | -o.0e219
OE .
n 1 2 's i B8 6 7 8 9 10 n 12 13 14
1 | 0.89407) -0.08103| -0,00878 | -0.02514| 0.00310 | -0.00817 | -0.0080% | 0.00320 | 0.00077| o.00k42| -.. — - ——
s — | -0.01202| -0.21284| 0.17478| 0.00884 | -0.00025 | o.00218 | -0.008%8 | 0.00838| 0.00618 | e | -0.00008|  aem —
5 —- | o.00679] o0.0%038| o0.14944| -0.15715| o.mse2 | -0.01%00 | o0.026%x | -0.cosaa| 0.00887 [ o= | o.00088| - —
7 — —- | -p.cossn| -0.01420| -0.08785 | -0.01184 | 0.22e04 | -0.12652 | o0.00860| ~0.00174 | == | -0.000m8| - —_
5 — e | 0.0008| — | 0.00817] o.comes| 0.07%06 |-0.10011 | -0.08949 | 0.08077 | --- | o.00m00] --- —
n — — -— — |-o.0om4| -—— |-0,008% | 0,00572 | -0.02187| 0.0608% | ~0.01828 | -0.00428| - —
13 —— — — — - -—— | o0mzs| — | o.coses| o.0mes| --- |-0.00460| -0.00208] —-
1= — — - —_ - — —— ~— |-v.c004t | e --- | o.0o0s2| --- | -0.00015
() iy, THACA
N 3 5 7 9
3 =0,080%4 — — -
5 — | eamt0| — — '
7 — — |-paous| —
) — - -—- | 0,005
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TABLE X - FOURTH APPROXIMATION FOR EAPIAN SECTION

4
(a) Ah,]
N 2 s 4 5 6 7 8 9
1 | -0.27369| -0.20158 | -0.70184 | 0.16384| -0.25999 | -0.08941| o0.27552| o0.00827
3 | 0.41055| 0.47402| 2.21465| 0.20698| -0.14470 | 0.54639| -0.94548 | 0.74600
5 | -0.13684| -0.63029 | -2.54101| -2.57593 | -0.09017 | -0.37686 | 3.50541 | -2.30284
7 - | o.20040| 1.28382| 3.50709| 2.64389 | -6.52365| 1.77718 | -2.32167
9 —- | -0.03256 | -0.31520| -1.68657| -5.74815 | -3.76560| 2.16705| 1.62381
1 we | = | o.05105| o0.18240| 1.95475| 2.08185| 4.82315| -3.15025
13 — — | -o.00837] —- | -0.38159 | -0.24116| —4.05218] 1.40343
15 - i e | 4 mme | c.025786| -~ | 0.80760| -0.10562
17 - — — - — e | -0.05845| -—
19 — - - — - — — —
21 — — — —— - -— — —
. .
(a) A pjy - Conoluded
N 10 1 12 13 14 15 16 18
1 0.50919 | -0,15252 | -0.03557| -0.00519| -0.03780 | ©.00311| -0.00705 | -0.00055
5 | -1.s6055] o0.63407 -0.17619| o0.30168| 0.04789 | 0.00880| o0.012409 o.00035
5 1.52675| -0.67753 | 0.58356| -0.64026 | -0.15063 | -0.08478 | -0.00705]|  ---
7 1.57105| 1.37105| -0.18288] o0.12860| o0.42178 | 0.0s728| -0.02052|  -—-
9 5.14985 | -2.08886 | -0.71016| -0.22655 | ~0.46415 | 0.00347| 0.07111 | -0.00280
11 | -2.88950| -2.33567 | 0.76885| 1.04169| 0.41857 | -0.03373| -0.07825| o0.00786
15 | -5.57522| 6.15680 | -0.99893| o0.85888 | -0.95828 | -0.07589| 0.02888 | -0.00818
15 3.42262 | -5.15298 | 1.55071| -2.77829| 1.12471 | -0.09953 | -0.01642 | 0.00786
17 | -0.7285| o0.22345| -1.01520| 1.34638| -0.42101 | 0.32418| o0.02502| -0.01578
19 o.04e55| - | o.z24m1] -0.02672| --- |-0.18607| -0.00802| 0.01698
21 —— mme | 0.01650|  —- -~ | o.00984| == | -0.00608
4
(®) By,
N 4 6 8 10 12
1 | o.o0m4 | o.024m,| o0.02657 | o.00876 | ---
5 | -0.05142 | -0.11565 | ~0.07267 | -0.01681 |-0.00395
5 | 0.05042 | 0.24498| 0.17382 | 0.07426 | 0.01578
7 | -0.01714 | -0.22984 | -0.35115 | -0.09795 | -0.01973
9 -—- | 0.07599| o0.33867 | 0.18895 | 0.02776
n — -— | ~0.11524 | -0.19764 | -0.03554
15 — — w | o.07041 | 0.05749
15 — — — - |-o0.01381

37



38 NACA TN 2511
TABLE X - FOURTH APFROXIMATION FOH KAPLAN SECTION - Conolnded
4

. - (¢) L hJ

N 1 2 3 4 5 6 7 8 9 10

1 | o.57347 | -0.09125 |-0.01270 |-0.04618 | 0.00885 }-0.00719 | -0.00186 | 0.00450| 0.00010| 0.00314

3 — | -0.08211 |-0.38592 | 0.30739 | 0.012%4 | -0.00727 | 0.00866 |-0.02764 | o0.02036 | -0.002727

5 — | o.00652 | 0.03939 | 0.28741 |-0.30615 | 0.01610 | -0.01570 | 0.09171| -0.04122 | 0.02595

7 — ‘== | -0.00726 | -0.03805 |-0.14615 | -0.21870 | -0.78172 | -0.45988 | 0.05534 | -0,04827

9 —- — | o0.00045 | 0.c0s82 | 0.03011 | 0.08574 | 0.11761 |-0.10872 | ~0.30580 | 0.27104

n — — — | -0.00059 |-0.00190 | ~0.02500 | -0.02891 | -0.08519| 0.07876 | ©0.12864

13 — — — | 0.00008] — | 0.00287| 0.00201 | 0.03859 | ~0.01535 | 0.04919

. 15 — — — — — |-0.00004| -— |-0.00502| o0.000735 | -0.02738

17 —- — — —_ — —- — | o.00024] — | o.00577

19 — — — — — — — —- —- | -0.00019

21 _— _— _— — — — -— —_— —_— —-

4
(c) Ly, - Conoluled .

hJ n 12 b3 1 15 16 17 18 29 21

1 | -0.00110 | -0.00023 |-0.00002 |-0.00019 | 0.00001 [-0.00005| — |-0.c0000| —- -

s | 0.00s68 | -0.00150 | 0.00189 | 0.00025 | 0.00005 | 0,00006| -— | o.c0000| —- -—-

5 |~-0.00706 | 0.00498 |~0.00445 |-0.00076 |-0.00082 [-0.00011 | —- — — -

7 | o.01904 | -0.00188 | 0.00107 | 0.00287 | 0.00035 |-0.00010] -—— — — ——

9 | -0.0sz22 | -0.01127 | -0.00260 | -0.0040¢ | 0.00002 | 0.00041] -— |-0.00000] -— -

11 | -0.1am18 | o0.0ms61 | 0.02170 | 0.00858 |-0.000%2 | -0.c00s8] -— | o.c0004f --- -

15 | -0.12851 | 0.04140 | 0.05407 |-0.03549 |-0.00132 | 0.00033| -— |[-0.c0005] — —

15 | o0.05032 | -0.01919 | o.04951 |-0.03878 | 0.00756 | -0.00055| — | o.co008| -—— -

17 | -0.00155 | 0.00700 | -0.01222 | 0.00454 |-0.00507 | ~0.00070 | 0.00404 | -0.00045] -— -—

19 —- | -0.00005 ] 0.00004 | - | 0.00157| o0.00008] —~- |[-0.00046] -0.00008] ---

2 — | o.00008| -— —-  |-0.00009| - —- | 0.00005[ - [-0.00002

4
o @Hyy

h" 3 < s 6 7 8 9 10 n 12 13 15
1 — | o.oome| — |o.0on| -— |o.0002 | —- |o.c0m0 | -— — -— -
s | -a.o100) -0.00735 | -~ |-0.00429 | — |o.co32 | ~— |-0.0005¢ | -— [-0.0000% | .— —-
5 —- | -0.00571| 0.25759 | 0.02227| -— |o.com8 | — |o0.00089 | --- |o0.000085 [ - —
7 — | o.00052| —- | 0.02768 |-0.145%1|-0.02542 | -— |[-0.00182 | - |-0.00021 | ... —
9 — — —  |-0.00188 | — |-0.01892 |-0.00021 | 0.00000 | -~ |o.c0028 | - —
n — — — — — | o.00202 | -— | o0.00841 | 0.10617 |-0.00046 | -— ——
3 — — — — — — —  |-0.00002 | - |-0.00150 |-0.0ms08 | -
15 — — — —_ —_— — — — — |o.007 | -~ |o.008m
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Perturbation veloclties, @y and o*-1
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Figure 17. - Veloclty increment at surface of Kaplan section.
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Figure 17. - Concluded. Veloclty incrememnt at surface of EKaplan section.
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